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Recently, optical flows (and time varying imagery in general)

have received growing attention among the computer vision communi-

ty as a source of possible information about a scene. Nakayama

and Loomis (1974) and Fennema and Thompson (1979) studied how

discontinuities in the "retinal" velocity field could be used

for segmentation purposes. Clocksin (1980), Gibson et al. (1955),

and Lee (1974) studied how the optical flow generated by an observer

translating in a stationary world provides information about (local)

surface orientation. Koenderink and van Doorn (1976), Longuet-

Higgins and Prazdny (1980), and Prazdny (1980, 1981) studied the

( extraction of surface orientation, (relative) depth and motion from

optical flow generated by an arbitrary curvilinear motion. Another

kind of approach, sometimes considered more suitable for a computer

vision system, relies on interpreting a sequence of static images

as discrete snapshots (see e.g., Nagel, 1981; Aggarwal and Badler,

1980). The computation of "retinal" velocities from image inten-

sity values was studied by Fennema and Thompson (1979), Hadani et

al. (1980), and Horn and Schunck (1980). Similar approaches based

on matching various higher-order image structures obtained from

two (temporally) consecutive images were attempted by, for example,

Barnard and Thompson (1980).

In this paper, we outline a method for obtaining the instan-

taneous direction of (relative) motion from optical flow manifest-

ed as image motions on the planar projection surface. We use polar

projection as the model of the physical image forming process.

Also, we assume throughout the paper that our world contains only



rigid and opaque objects. The method presented here does not

use projective or geometrical relations, as might be expected

from the use of the polar projection; it is based on computa-

tions and relationships defined and measurable solely on the

projection plane. For example, the method does not require

knowing the visual direction (a 3D vector) of a "retinal"

point (as was required, e.g., in Prazdny, 1980).

Before outlining the method, we briefly consider a few rele-

vant facts. Optical flow can be (instantaneously) decomposed

into two independent components (Koenderink and van Doorn, 1976;

Nakayama and Loomis, 1974), a rotational and a translational com-

ponent. However, only the translational component contains

infromation about (local) surface orientation or relative depth.

The translational "retinal" field consists of motion along

straight lines all intersecting at a common point, the focus

of expansion (FOE). This point corresponds to the point where

the (three-dimensional) vector specifying the instantaneous

direction of motion (the vector tangent to the motion path

described by 0 at a given instant) pierces the projection plane.

Our method, by searching for this point, effectively decomposes

the optical flow field into its two constituent fields. Briefly,

the method is based on minimizing an error function of three

parameters. The construction of the function reflects the

following observation: if the three parameters specyifying

the rotational component of the (relative) motion are chosen



properly, the translational "retinal" field yields lines all

meeting at FOE. We do not require the spatial derivatives

of the "retinal" velocity field, as in Koenderink and van

Doorn (.1976) or Longuet-Higgins and Prazdny (1980). The method

can, but does not have to be, implemented as a local computa-

tion. While we have chosen, for simplicity, to consider only

the case of an observer moving in a stationary world, it should

be noted that the method has a much more far-reaching implication.

Because it produces a description of relative motion, it can

be applied to a region of the image locally to describe the

( (relative) motion of that region independently.



2. Locating the focus of expansion (FOE)

To see that it is possible to decompose the instantaneous

positional velocity field on the projection plane into its two

components, consider the effects of rotation and translation

separately. It is advantageous to imagine that the optical

flow field is generated by the motion of the observer in a

stationary environment. This conceptualization has an immedi-

ate interpretation and is, of course, legitimate, for all mo-

tion considered here is relative.

Consider the observer rotation first. Because the rota-

tional component of the relative motion does not carry infor-

mation about the 3D disposition of the texture elements, the

motion of an image element on the projection plane will depend

only on its position on PP. A rotation vector (angular velo-

city vector perpendicular to the instantaneous plane of rotation)

can be decomposed into two components, one parallel to the

projection plane (PP), and one perpendicular to it (see Figure 1)

<Note 2>.

Consider the rotation about the vector perpendicular to PP

first (the z-axis in Figure 1). For each "retinal" point P with

coordinates (xy), the rotation of the observer about the z-axis

(perpendicular to PP) results in P moving along a circular tra-

jectory on PP. The motion of P on PP is specified by a direction

vector E-(-yx)/ (x2+y2), and by the magnitude c-c0(x 2 +y2 ), where

c0 is the speed of a "retinal" point at a unit distance from 0'

(the center of the "retinal" coordinate frame). The (2D) velo-

city of P(x,y) due to observer rotation about the z-axis is thus

S i



given by

(1) cxy)c-yx

Consider now the situation in which the observer rotates

about a vector parallel to the projection plane <Note 3>. To

simplify the discussion, we consider only rotation about an

axis (through 0) parallel to the "retinal" y-axis. The ex-

pression for rotation about a parallel to the x-axis is sym-

metrical in the coordinates x and y [compare equations (5)

and (6)]. We first show that the path of a point P(x,y)

under rotation of the observer about the y-axis is a hyper-

( bola, and then derive the expression for the velocity vector

h Hat P(x,y).

Consider Figure 2. A stationary texture element in the

3D environment projects into a point P(x,y) on PP. As PP ro-

tates about a line parallel to the y-axis, the coordinates of

P will eventually become P(O,y 0 ). Observe that the projecting

ray defines a fixed visual angle with respect to the plane of

rotation. It is clear from Figure 2 that

22tan2= 2

x +il

This is because the distance 100'1=1, by assumption (this effec-

tively scales the whole projection system by the focal distance).

From this, we obtain

This is the equation of a hyperbola with center at origin o.

The direction of the velocity vector at P(x,y) is determined by

the tangent line at that point. Differentiating (2), we obtain



yewX+ tang

x +1

(see Figure 3). RH is thus determined by i,-(cos ,sin&). In

terms of the ("retinal") coordinates (x,y) of P, this becomes

(3) ! H (x 2+1, xy)
((xx+,)+(xy)y

To determine the magnitude of !H, consider two fixed points

R and S on two rays such that at time to, the points coincide

with points P(O,y0 ) and 0', respectively (see Figure 3). The

two rays define a visual angle . Now at a time tI (after a

rotation of PP by some angle), R projects into the point (x,y)

while S projects into the point (x,O). It is evident that the

two projections move so that at any time, their x-coordinates

are the same. In other words, the x-components of their velo-

cities on PP are the same. We know that the path of P is a

hyperbola. It is thus sufficient to compute the horizontal velo-

city component and project it back onto hH to obtain h, the

magnitude of NH

Consider Figure 4. If the point x moves with angular velo-

city h0 (recall that I00'I=i), then hx is defined by

h Vf7TEO xx cosn
But cosn- (see Figure 4) so that hx-h0(x2+l). Pro-

(X+1) (u h(+).Po

Jecting hx back on EH and combining the result with equation (3)

we obtain

(5) N-h 0 i (x2+1, xy)

Here h.H is the speed of a "retinal" element at 0'. Analogously,



the rotation of the observer about an axis (through 0) parallel

to the "retinal" x-axis results in the velocity vector hV defined

by

(6) hvrh0v (xy, y2+l)

The input data we are trying to interpret, the optical flows,

consist of a set of vectors v" defining the positional velocity

field on the projection plane. Because we are dealing with

velocities, it is easy to see that

(7) v" + (hV + N) +

( where t is the velocity vector due to the pure translation of

the observer. In other words, for each "retinal" locus (x,y),

and a set of parameters (h0Hc0,h0V), equation (7) defines a

vector t which is a vector function of the three parameters.

As mentioned above, the property of the translational "retinal"

velocity field (defined as straight lines specified by a given

"retinal" locus (x,y) and the associated vector t) is that all

the lines intersect at one common point, the FOE (see Figure 5).

This property makes it possible to define an error function which

will lead to resolution of the vector field v" into its rotational

and translational components. For a given distribution of v"

on PP, we are searching for those values of the parameters (hOH,

c0,hov) for which the set T-i}t. is such that all lines Li defined

by the vector ti and the retinal locations Pi intersect at a

common point, the FOE.



One way of doing this is as follows. Consider an arbitrary

"retinal" point P [with coordinates (x,y)] and a set of other

(possibly neighboring) points {P.1. The points Pi together

with the vectors !i define lines Li which intersect the line L

at points Ii (see Figure 6). Consider the lengths ki between

- 2the intersections Ii and the point P. The variance V=E(i-L) /n
1

(where 2 is the algebraic average of the Zi s) is a good measure

of the dispersion of the intersections Ii . When the lines Li

all meet at FOE, V=O. To obtain the FOE, we thus simply minimize

V(hOH,co,hov). Note the way in which the decomposition is accom-

plished: a property of the translational field is here used to

obtain the rotational field,resulting in both fields being ob-

tained at the same time, by the very same computation. The

method, being minimalization of a distribution measure, can also

immediately be applied when the input data (the vectors v") are

noisy.



3. Some experimental results

The schema described above was tested in a (simulated) world

of planar surfaces. The results are encouraging. Eight points

surrounding a central point were used to define the set {Pi}

to obtain the variance V. It should be noted that while in our

implementation neighboring points were used (the neighborhood

subtended about 15 degrees of arc), this is by no means a neces-

sary condition. A direct minimalization scheme attributed to Nelder

and Mead (Nash, 1979) was used to minimize the variance V. The

scheme was used mainly for its simplicity and ease of encoding.

k The values of hOHIcoi and h v were restricted to lie between ±90

degrees of arc/sec (the "negative" values corresponding to counter-

clockwise rotations). This feasible region was defined to

restrict the search space to meaningful values and to prevent possi-

ble divergence of the iterative process. The minimalization pro-

cedure converged to a correct solution from any initial guess

within this feasible region. Not all eight distances £i were used

to define V. To minimize the influence of (quantization) errors,

the lengths ki were ordered in magnitude and the two extrema

magnitudes were discarded. We also tried to use the range of i

(defined as Itmax- min1) as the error function with good results.

In both cases, the FOE was located precisely (using single pre-

cision arithmetic 17 significant digits]). When the precision

with which the vectors v" were defined was lowered to 4 significant

digits (the angular error made by this quantization depends on the

magnitude of the vector v" [see Figure 7]), the FOE was located



within approximately ±5 degrees of arc of the correct position.

Extensive testing with real data (and using a more efficient

and faster minimalization schema) should be performed to deter-

mine how the errors in v" propagate through the computations

and affect the precision with which the FOE can be obtained.

(
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4. Discussion and conclusions

It is important to realize precisely what has been achieved,

and how. Given a set of "retinal" vectors v" on the planar

projection surface, we have shown that it is possible to extract

the translational velocity field, containing all information

about spatial disposition of the texture elements, solely by

computations using data available on the projection surface (see

Figure 8). In fact, besides the velocity vectors v", only the

positions of the corresponding loci on the plane with respect

to a fixed reference point (the "fovea") are required. Another

feature of the method is that it can be implemented as a local

computation (the radius of the neighborhood would have to be

large enough), and thus performed at many "retinal" locations

in parallel, thus decreasing the dependence of the method on a

good initial approximation to the parameters hOH' c0, and hov.

The simplicity of the method is striking, especially in comparison

with other methods purporting to achieve the same results (e.g.,

Prazdny 1980; see also Nagel 1981). The method requires only

a few points and the corresponding "retinal" velocities as input

(for example, in the visual periphery, which is apparently used

by the human visual system to compute egomotion (Johansson, 1977]).

One disadvantage of the method is that it fails when the direction

of instantaneous motion is parallel to PP. In this case, the FOE

is undefined (it corresponds to an ideal point of the projective

plane). This is not a serious drawback, however. Another



similar method based on maximizing the parallelism between

the vectors defining the translational field could take care of

this situation.

It is also important to realize that once the FOE has been

computed, we immediately know the direction of the translatory

motion on the projection plane at each "retinal" locus; it is

simply the line connecting the FOE with the given locus (on the

"retinal" plane). To obtain information about (relative) depth

or (local) surface orientation, we need to compute only the mag-

nitude of motion in this direction; the two-dimensional problem

is thus reduced to a more manageable one-dimensional problem.

This leads directly to a much more general schema where only

the velocities (v") of a few "interesting" image elements (at

"prominent" locations where the velocity v" can easily be detected)

are computed first to locate the FOE. Following this the magni-

tude of the translatory motion at each image point would be com-

puted without explicit extraction of the optical flow (the velocities

v") itself. As was noted by Batali and Ullman (1979) or Horn

and Schunck (1980), one can compute, by a local computation, only

the velocity component in the direction of the gradient of the

image intensity function at a given "retinal" locus. But this

is all we would need if the FOE were already located: by pro-

jecting this velocity component onto the direction of the trans-

latory field at a given image plane locus, we would obtain the

(relative) depth information in its purest form - as the dis-

tribution of the magnitudes of the translatory field.



To summarize, we have shown how the direction of (relative)

motion can be computed by a simple minimization computation

operating on data available on the projection surface. The method

can be implemented locally and is also feasible biologically.

Speculatively, perhaps, its operation might be reflected in the

recent finding of the "looming" or changing-size channels in

the human visual pathway (Regan, Beverley, and Cynader, 1979;

Beverley and Regan, 1979).

--A. .h



Notes

<4ote 1>

In general, only conclusions about relative quantities can

be derived by interpreting optical flows. Local surface ori-

entation, relative depth (the ratio of distances of two texture

elements in two distinct visual directions), and relative motion

are such quantities.

<Note 2>

The following notational convention will be used throughout the

paper. n denotes a vector, n is its unit vector, and n is the

norm of n, i.e., n=nn. Angular velocities are conceptualized

as axial vectors, i.e., vectors perpendicular to the instantaneous

plane of rotation, with magnitude equivalent to the angular speed.

The word "retinal" will be used to denote the projection plane, PP.

P(xy) denotes a "retinal" point P with "retinal" coordinates

(x,y) in the two-dimensional coordinate frame centered at 0'.

<Note 3>

The set of paths traced by the image elements under this motion

is a family of hyperbolas with principal axes inclined at angle

with respect to the y-axis. The family is symmetrical about

a straight line through O'. This is the line corresponding to

the intersection of the plane of rotation with the projection

plane.
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Figure 1.

Without loss of generality, the projection plane PP can be positioned
at unit distance from the center of projection 0, and parallel to
the yz-plane. Any vector A can then be decomposed into a component
parallel to the projection-plane, and a component perpendicular to
PP. 01 is the center of the "retinal" coordinate frame (2D).



y P

Figure 2.

When the observer rotates about the vector y, the path described
by an image element P on the image plane PP is a hyperbola.
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Figure 3.

The observer rotates about the line parallel to y through 0.
The direction of the velocity vector at P(x,y) is determined by
tanc. The projections of the points R and S on PP have the same
horizontal velocity components.
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Figure 4. hx sin (w/2 + n)
The angular speed of a point x is h0  X , by

x +1

definition (1o0'J1 1).
From this, hx can be computed directly as a function of the para-
meter h0.



Figure 5.

An image velocity v" (on the planar projection surface PP) of a
point P can be resolved into three components. The hyperbolic com-
ponent h is due to the rotation of the ray about an axis (through
o) in te projection plane (the angular velocity is a linear
combination of x and y). The circular component c is due to the
rotation of the ray about an axis (through 0) parallel to i. The
translational component t is the remaining vector which constrains
the decomposition of v"; t is constrained to be such that YQ.EPP:
(L intersect in one common point). In the illustration aboe,
th& direction angle of the hyperbolic field is zero, i.e., the
observer rotates only about a line parallel to the y-axis.
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Figure 6.

To find the intersection of L with Li (I.i), we have to solve for
Xtin

P+zt-p.+x.t.
-1 1-.

To obtain it we multiply both sides by t the perpendicular tot.

This yields P P

where P and P are the (2D) position vectors on the projection

plane. If tin(tx,t ) then t'm(-t ,t ).
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Figure 7.

The quantization error increases with decreasing vector magnitude.
At b, an error of about 10 degrees of arc is made by representing
v as v', while at a sucharepresentation results in an error of
T5 degrees of arc.
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(a) The Positional velocity vector field generated by an observer
"walking" backwards (on a horizontal ground plane) from a
surface (plane) slanted 30 degrees (towards the observer)
from the vertical.
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Figure 8.
(b) Corresponding translational field.

"+" denotes the FOE computed by the method (error-0).
The information about the (local) surface orientation and
relative depth is contained onl in the magnitudes of the
velocity vectors; the direction of the vectors (and the FOE)
depend only on the parameters of the relative motion.
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the previous attempts at interpreting optical flow to obtaiu
information about the three-dimensional disposition of texture
elements, the method uses only relationships between quanti-
ties on the projection plane. No 3D geometry is involved.
Also outlined is a possible use of the method for the extrac-
tion of that part of the optical flow containing infor---ti
Z--t relative depth directly from the image intensity values
without extracting the "retinal" velocity vectors.
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